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Nonparallel Stability of Boundary Layers

The asymptotic formulations of the nonparallel linear stability of

incompressible growing boundary layers are critically reviewed. These

formulations can be divided into two approaches. The first approach

combines a numerical method with either the method of multiple scales,

or the method of averaging, or the Wentzel-Kramers-Brillouin (WKB)
approximation; all these methods yield the same result. The second

approach combines a multi-structure theory with the method of multiple
scales. Proponents of the second approach have claimed that their

approach is rational and the first approach is not rational. The first

approach yields results that are in excellent agreement with all

available experimental data, including the growth rates as well as the

neutral stability curve. On the other hand, the second approach cannot
even yield the neutral curve for the Blasius Flow.

Introduction

This paper addresses the linear stability of incompressible growing
boundary layers. For two-dimensional mean flows, the streamwise

velocity component U(x,y) is a function of the transverse coordinate y
as well as the streamwise coordinate x. However, the rate of variation

of U with respect to x (i.e., aU/ax) is small compared with the rate of

variation of U with respect to y (i.e., aU/ay). Moreover, the transverse

velocity component V(x,y) is small compared with U and is a function of

y as well as x. For three-dimensional flows, the velocity components

U(x,y,z) and W(x,y,z) in the plane of the body are much larger than the
transverse velocity component V(x,y,z). Moreover, aU/ax, aU/az, aW/ax,

and aW/az are small compared with aU/ay and aW/ay.

To determine the linear stability of a three-dimensional mean flow,

we superimpose on it a small disturbance u(x,y,z,t) v(x,y,z,t),

w(x,y,z,t), and p(x,y,z,t). Substituting the total flow into the

Navier-Stokes equations, subtracting the mean-flow quantities, and
linearizing the resulting equations, we obtain

a__uu+ a_vv+ ?_w = 0 (I)
ax ay az

au au au BU ap 1 2
a_ + U _ + W--az + V--By + aX - -R v u

+ [u BU au BW =o (2)

BV av av ap 1 2
_+ U_+ W--+az ay --vVR

+ [u aV aV + V av aVv :o (3)
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I 2
Bw @w @w + v BW + @p _/w

+ u +w Bz -

BW _w BW
+ [uT + v : 0 (4)

where velocities, lengths, and time were made dimensionless using the

free-stream velocity U , a characteristic length a, and a characteristic

time a/U . Here, R = U_6/_ is the Reynolds number. The boundary
conditions are

u = v = w = 0 at y = 0 (5)

u, v, w, p + 0 as y ÷ _ (6)

The terms in the square brackets in Eqs. (2)-(4) are due to the growth

of the boundary layer (nonparallel terms).

Parallel Problem

Considering the parallel problem, one neglects the terms in square

brackets in Eqs. (2)-(4) and considers U and W to be functions of y

only. Then, one seeks a normal mode solution of the form

where

u : {I(Y)E, v = {3(Y)E, w : {s(Y)E, P = _4(Y) E (7)

E : exp[i(_x + Bz - rot)] (8)

Substituting Eqs. (7) and (8) into Eqs. (I)-(6) and neglecting the terms

in square brackets yields

ie_1 + Dk 3 + iB_ s = 0 (9)

1 (D2 2 2i(eU + BW - m)_1 + _DU + i_{ 4 - _ - a - 8 )_I = 0 (10)

1 2 2

i(aU + BW - m)_3 + D_4 - _ (D2 - _ - B )_3 = 0 (ii)

1 (D2 2 2i(_U + BW - m)_s + _3DW + iB{4 - _ - _ - B )k s = 0 (12)

_ = {3 = ks = 0 at y = 0 (13)

{n ÷ 0 as y ÷ - (14)

where D = B/By. For a given U(y) and W(y), Eqs. (9)-(14) constitute an

eigenvalue problem, which yields a dispersion relation of the form
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,,, : m(_.B.R) (15)

A number of techniques have been developed for solving this eigenvalue

problem. These include shooting techniques, finite-difference methods,

Galerkin methods, and collocation techniques using Chebyshev or Jacobi
polynomials.

For the case of a two-dimensional mean flow and a two-dimensional

disturbance, W = O, us = 0 and B = O, and Eqs. (9)-(14) reduce to

i_{ I + D_ 3 : 0 (16)

1 (D 2 _ a2){ : 0i(_U - =);i + _3 DU + ia;. - E l (17)

1 D2 2
i(_U - _)_3 + D_, - _ ( - _ )_3 = 0 (18)

{i = _3 = 0 at y = 0 (19)

{n ÷ 0 as Y ÷ - (20)

Equations (16)-(20) can be combined to yield the Orr-Sommerfeld equation

(i:R)_I(D2 2)2- {3 : (U - c)(D

subject to the boundary conditions

- _2)_ 3 - _3D2U

(21)

_3 = D{3 = 0 at y = 0 (22)

_3, D_3 + 0 as Y + _ (23)

where c = m/_. The neutral stability curve calculated using either Eqs.

(16)-(20) or Eqs. (21)-(23) are in good agreement with available
experimental data as shown in Figure I.

Recently, Smith I claimed the above methods to be "irrational" and

developed multi-structured theories for treating this problem. He used

a result from an "irrational theory" for the Blasius flow to observe

that "the typical wavelength of the n_4_rally stable modes on the lower

branch increases proportionally to Re z as Re ÷ _" and concluded _t
disturbances at the lo_ branch vary on a streamwise lenqth O(Re- z°)

and a time scale O(Re -'/") and hence they are governed by-a triple-deck
structure. Consequently, he let

x = I + _3X, t = E2T (24)

and
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u,v,p=E = exp[ie(x) - inT]

where E = Re -I/8 and

2 3

n = =i + _=_ + E =+ + _ She =+L + "'"

de 2 3

dX

Then, he expanded the variables in the three decks as follows:

Main Deck

2 3

u = [u I + _u 2 + _ u3 + ¢ _nE U_L
+ ...]E

2 3 . ]
V = {eV 1 + E V 2 + E V 3 + e _nE V4L + ... E

2 3

__I_nl + _ P2 + _ P_ + E _,nc p_,,P + ...IE

where

y = E Y, Y = 0(1)

Lower Deck

2 3 ]
u = {U_ + _U 2 + E U 3 + ¢ _nc U,L + ... E

3 A+ 5

v : [_2V 1 + c V 2 + e V3 + E _nc V4L + ...]E

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

2 _ ...]Ep = [EP_ + c P2 + E3p3 + E _nc P4L +

where

5Zy : _ , Z = 0(i)

Upper Deck

2_ 3_ _ }Eu = [_ul + c u 2 + ¢ u_ + ¢ _nc U4L + "'"

2_ 3- 4 - ]v = [_v_ + _ v 2 + _ v_ + ¢ _,n_ V,,L + ... E

2- 3_ h.

p = [_ + _ p2 + _ p_ + _ _,n_ P',L + ...]E

where

3-

y : ¢ y, _ = 0(i)

(33)

(34)

(35)

(36)
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To account for the nonparallel effects, Smith had to include the next
term in each of the expansions in Eqs. (26)-(36).

Substituting the above expansions into the parallel part of the
disturbance equations (i)-(4) and boundary conditions (5) and (6),
dropping the terms in square brackets, putting W = O, separating
coefficients of like powers of _, and solving the resulting 36
equations, one obtains expressions for u, v, and p in the different
decks. Matching the resulting expressions provides asymptotic
expansions for u, v, and p. For the neutral stability curve, Smith
obtained

_3/2 %
=mn = 0.995 R a [i + 1.597 R- % + 10.02Fn R- a

+ 0.988 R 6 tn R6 + ...]

where

Ra = 1.7208/xRe

This expression is in fair agreement with the lower branch of the
neutral stability curve for large Re. However, its accuracy
deteriorates as Re decreases. In fact, it does not predict a minimum
critical Reynolds number.

Bodonyi and Smith 2 inspected the results of the "irrational theory"
to observe that "the stability properties of the Blasius boundary layer
are g_rned by the behavior on the streamwise length scale
O(Re -_z°v) as far as the upper branch of the n_w_ral curve is
concerned". Consequently, they used o = Re-,z-v as their perturbation
parameter and used the streamwise scale X defined by x = i + o X and the
time scale t = o_T. This choice leads to a five-zoned structure. To

account for the nonparallel effects, one needs to carry out the
expansion to 0(o ). In vlew of the logarithmic terms, one needs 13 terms
in the expansion. With three variables and five decks, one needs to
derive and solve 195 equations and then match the results. Bodonyi and
Smith gave up after four terms. Their calculated neutral stability

curve, which is intended to approximate the6upper branch, is below the
lower branch!! We note that for an Re = 10 , o = 0.5, which is not
small.

For the case of an accelerating=_ggndary layer, Smith and B9_gnyi 3
assumed a streamwise variation O(Re -_z-_) and a time scale O(Re -'z_)
near the upper branch of the neutral stability curve. Using this
streamwise variation leads to a five-z9D@Q structure, with the
nonparallel effects appearing at O(Re-_/'_).

It should be noted that the parallel flow assumption breaks _own
miserably for th_ case of Gortler instability. Floryan add Saric _ and
Ragab and Nayfeh J derived the appropriate equations for Gortler
instability for the:cases of zero and nonzero pressure gradients,
respectively. Hall u questioned the solution of the resulting equations
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using a normal-mode approach and suggested solving them as an initial-

value problem.

Nonparallel Problem

A better agreement between the theoretical and experimental results

can b_ _tained by accounting for the influence of the nonparallel
terms - . To this end, we can use either the method _{ _xeraging or
the WKB approximation or the method of multiple scales _,*_. In this

paper, we use the method of averaging and let

u = A(x,z,t)_(y,x)e ie, v = A(x,z,t)_3(y,x)e ie (37)

p = A(x,z,t)_4(y,x)e ie, w = A(x,z,t)_s(Y,x)e ie (38)

where A is a slowly varying function of x and t,

ae _(x), De aeax aT = B, at

and the _n are given by Eqs.1{91_(14 ).
lengthy aTgebra, one obtains _-

aA aA BA
h 1 __ + h 2 _ + h 3 _- = h4A

where

(39)

After a straightforward but

hI = [ ({i_, + _s{3 + {s{s)dY
O

, * * * *

h2 : f [{t_4 + {4{I + U({1{t + _,{3 + {s{5)] dy
0

(4O)

(41)

(42)

. * * * *

O

(43)

a{ I . a_ s . a_4 . a{4 . a{ I .

h4 = - _ [Tx- _ + aT _4 + a_ _t + aT us + u (B--x-_i
O

a{t . at-- 3 . DE s .

+ a--_-_ + a--_- _ _ az az

aU + _;s BW)_ + (VD{+ ({_ _ + VD{_ _-
aV

+ r-'3DV + {3 -_

* aW aW_ *]dy+ _s a_)_ + (_ _ + VD_s + _s _J_s

where the _. are solutio_ of the adjoint homogeneous problem.

(40) can be rewritten as

(44)

Equation
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where

aA aA aA
+ _ _ + _B --az= hAa_

h 2 h 3 h_

_ =h-_l' _B =Ell ' h = h_

Here, ,,, and _^ are the components of the group velocity in the
Qt . I_ ,

streamwlse dlrectlon.

(45)

Equation (45) describes the propagation of a wavepacket centered at

the frequency _r and the wavenumb_s or and Br, where the subscript r
stands for the Feal part. Nayfeh _ showed that for a physical problem,

_ and _B in Eq. (45) must be real.

For a monochromatic wave, aA/at = 0 and Eq. (45) reduces to

aA aA
--+ _ -- = hA (46)
ax 8 az

For a physical problem, Nayfeh 14 showed that w_/_ must be real For
. . ._ _

theca eof aparallelmeanflow condo,,onreduc  to being
real, which was obtained by Nayfeh and Cebici and Stewartson using

the saddle-point method.

Two-Dimensional Mean Flows

For the case of a monochromatic wave, aA/at = 0 and Eq. (40) yields

A = Aoexp[ f (h4/h2)dx ] (47)
X
0

where Ao is a constant. Hence,

h4

u = Ao_(y,x)exp[i(_dx - _t) + f (_-_)dx] (48)
I

Consequently, the growth rate

o = Real [_x (In u)]

is given by

h.
+ Real [ ) + Real a

o : - _i _ [Tx (inc_)} (49)

The first term is the quasiparallel contribution, whereas the last two

terms are due to nonparallelism. It should be noted that the last term

produces a variaton in the growth rate across the boundary layer.

Since {_ is a function of y and, in general, distorts with
streamwise distance, one may term stable disturbances unstable or vice

versa. Morever, a different growth rate would be obtained if one

replaces u with another variable. For example, using v or p or w, one

obtains the growth rates

h4

o = - (1]. + Real (_) + Real[Txa (inCm] } (50)
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where m = 3, 4, and 5, respectively. This raises the questions "What is

meant by stability of a boundary layer?" If the stability criterion is

based on o, then which o should be used? If one uses an N factor to

compare the stabilizing or destabilizing influences of certain
modifications to the boundary layer, then the contribution of the last

term will not be significant.

In the case of parallel flows, the last terms in Eqs. (49) and (50)

vanish and the growth rate is unique and independent of the variable

being used. Consequently, one can speak of neutral disturbances or

neutral stability curve given by the locus of _i(R,_) ._s0 However, inthe case of a nonparallel flow, the neutral stability Given

by o(R,m) = 0 and depends on the flow variable used to calculate the

growth rate and the distance from the wall. To compare the analytical
results with experimental data, one needs to make the calculations in
the same manner in which the measurements are taken. Available

experimental stability studies almost exclusively use hot-wire

aneomometers. Usually, they measure the rms value luI of the streamwise

velocity component u and use it to define the growth rate. Figure 2 2
compares the neutral stability curves calculated using lul a_Q +
with the experimental data of Kachanov, Kozlov and Levchenko I_. .Since

the experiment measured lul, the calculations of Saric and Nayfeh I0,

which were based on lul, are in better_agreement with the experimental
data than the calculations of Bouthier I, which were based on a- + V-.

Moreover, the growth rate is singular at the locations where luI = O.

Figure 2 shows also that the calculated locations of the singular growth

rates are in good agreement with the experimental results.

Some of the available experimental studies follow the maxima of lul

whereas others f_l_Rw a constant boundary-layer similarity variable q.
Saric and Nayfeh _,_v found that the contribution of the last terms in

Eqs. (49) and (50) are significant if one follows a constant n whereas

their contributions are negligible if one follows the maxima of lul,
yielding

h 4

o = - _i + Real(_-_) (51)

The neutral stability curve calculated by Saric and Nayfeh 9 using Eq.

(51), and shown in Figure 1, is in very good agreement with the

experimental data that Follow the maxima of lu|, except near the minimum

critical Reynolds number where the data may be suspect. However, in the

case of experiments conducted^by following trajectories of constant q
such as those of Ross et al. _u, the effect of the distortion of the

eigenfunction cancels the nonparallel effects, resulting in a better

agreement between their data and the results of quasiparallel theory.

Saric and Nayfeh I0 made other comparisons of the growth rates

calculated u_ng Eq. (51) with the experimental d_a of Strazisar, Prahl
and Reshotko _ and Kachanov, Kozlov and Levchenko I_. Strazisar et al.

* Also, private communication, June 1976.
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conducted their experiments in a water tunnel and performed their

measurements at the maxima of lul, thereby minimizing the effects of the

distortion of the eigenfunction. They measured the amplification rate

as a function of the frequency at different locations on the plate,

corresponding to different Reynolds numbers. Figure 3 shows a good

agreement between the theoretical and experimental results. Kachanov et
al. also followed the maxima of lul and measured the amplification

factor a = lul/luol, where luo I is the rms value of u at the first
neutral point. Figure 4 shows a good _reement between the theoretical
results calculated by Saric and Nayfeh TM using Eq. (51) and the

experimental results.

T_ present nonparallel analysis was extended by EI-Hady and

Nayfeh_ to the case of two-dimensional compressible boundary layers, by

Nayfeh i_ to the case of t_ee-dimensional compressible boundary layers,
and by Nayfeh and EI-Hady L_ and Asrar and Nayfeh _ to heated boundary

layers.
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Figure I. Neutral stability curve for Blasius boundary layer. Solid

symbols are Branch I experimental points. Open symbols are

Branch II. The critical Reynolds number is 400 for

nonparallel calculations, 520 ?or parallel calculations

(Saric and Nayfeh9).
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Figure 2. Vertical variation of neutral stability points at F =

200xi0 -6. Experimental points from Kachanov, Kozlov and

Levchenko 17. Dashed lines are calculations of Bouthier 7

based on energy. Solid lines are calculations of Saric and

Nayfeh 10 based on luI. Streamwise position is the Reynolds

number based on ar which is the _ of Refs. 7 and 17. Solid

triangles give the locus of luI = 0 and the broken line is

the calculation 10 for luJ = O.
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Figure 4. Amplification factor a as a function of streamwise position

at F = 110xi0 -6 and F = 86 x 10-6 . Experimental points from

Kachanov, Kozlov and Levchenko following maximum of lul and

nonparallel results of Saric and Nayfeh based on following

maximum of lul.
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